Definition:Boolean Interpretation/Set of Formulas
Jump to navigation
Jump to search
Definition
Let $\mathcal L_0$ be the language of propositional logic.
Let $v: \mathcal L_0 \to \left\{{T, F}\right\}$ be a (partial) boolean interpretation.
Let $\mathcal F$ be a set of WFFs of $\mathcal L_0$.
Then $v$ is called a boolean interpretation for $\mathcal F$ iff $v$ is defined on $\mathcal F$.
Otherwise, $v$ is called a partial (boolean) interpretation for $\mathcal F$.
Sources
- 2012: M. Ben-Ari: Mathematical Logic for Computer Science (3rd ed.) ... (previous) ... (next): $\S 2.2.4$: Definition $2.24$