Definition:Cantor-Bendixson Derivative
Jump to navigation
Jump to search
Definition
Let $\struct {X, \tau}$ be a topological space.
Let $S \subseteq X$.
Then for all ordinals $\beta$, the $\beta$th Cantor-Bendixson derivative of $S$ is defined by the Principle of Transfinite Recursion thus:
- $S^{\paren \beta} = \begin {cases} S & : \beta = 0 \\ \paren {S^{\paren \alpha} }' & : \beta = \alpha^+ \\ \ds \bigcap_{\alpha \mathop < \lambda} S^{\paren \alpha} & : \beta = \lambda \end{cases}$
where:
- $\paren {S^{\paren \alpha} }'$ is the derived set of $S^{\paren \alpha}$
- $\lambda$ is a limit ordinal.
Source of Name
This entry was named for Georg Cantor and Ivar Otto Bendixson.