# Definition:Cauchy Determinant

Jump to navigation Jump to search

## Definition

A Cauchy determinant of order $n$ is the determinant of a square Cauchy matrix of order $n$:

$\map \det {C_n} = \begin{vmatrix} \dfrac 1 {x_1 + y_1} & \dfrac 1 {x_1 + y_2} & \cdots & \dfrac 1 {x_1 + y_n} \\ \dfrac 1 {x_2 + y_1} & \dfrac 1 {x_2 + y_2} & \cdots & \dfrac 1 {x_2 + y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac 1 {x_n + y_1} & \dfrac 1 {x_n + y_2} & \cdots & \dfrac 1 {x_n + y_n} \\ \end{vmatrix}$

Its value is given by:

$\map \det {C_n} = \dfrac {\ds \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i} \paren {y_j - y_i} } {\ds \prod_{1 \mathop \le i, \, j \mathop \le n} \paren {x_i + y_j} }$

If $C_n$ is given by:

$\map \det {C_n} = \begin{bmatrix} \dfrac 1 {x_1 - y_1} & \dfrac 1 {x_1 - y_2} & \cdots & \dfrac 1 {x_1 - y_n} \\ \dfrac 1 {x_2 - y_1} & \dfrac 1 {x_2 - y_2} & \cdots & \dfrac 1 {x_2 - y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \dfrac 1 {x_n - y_1} & \dfrac 1 {x_n - y_2} & \cdots & \dfrac 1 {x_n - y_n} \\ \end{bmatrix}$

then its value is given by:

$\map \det {C_n} = \dfrac {\ds \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i} \paren {y_j - y_i} } {\ds \prod_{1 \mathop \le i, \, j \mathop \le n} \paren {x_i - y_j} }$

## Source of Name

This entry was named for Augustin Louis Cauchy.