# Definition:Cauchy Principal Value/Contour Integral

Jump to navigation
Jump to search

## Definition

Let $C$ be a contour defined by a directed smooth curve.

Let $C$ be parameterized by the smooth path $\phi: \closedint {-R} R \to \C$, where $R > 0$.

Let $f: \Img C \to \C$ be a continuous complex function, where $\Img C$ denotes the image of $C$.

Then the **Cauchy principal value of $\displaystyle \int f$** is defined as:

- $\PV_C \map f z \rd z = \PV_{\map \phi {-\infty} }^{\map \phi {+\infty} } \map f z \rd z := \lim_{R \mathop \to +\infty} \int_{-R}^R \map f {\map \phi t} \map {\phi'} t \rd t$

where $\displaystyle \int_{-R}^R \map f {\map \phi t} \map {\phi'} t \rd t$ is a complex Riemann integral defining a contour integral.

## Also denoted as

Variants of the notation $\PV$ for the **Cauchy principal value** can often be seen, such as:

- $\operatorname {P.V.} \displaystyle \int$

- $\operatorname {p.v.} \displaystyle \int$

- $PV \displaystyle \int$

and so on.

## Source of Name

This entry was named for Augustin Louis Cauchy.

## Technical Note

The $\LaTeX$ code for \(\PV\) is `\PV`

.

## Sources

- 2004: James Ward Brown and Ruel V. Churchill:
*Complex Variables and Applications*(7th ed.): $\S 7$