Definition:Complex Area Hyperbolic Function

From ProofWiki
Jump to navigation Jump to search

Definition

Complex Area Hyperbolic Sine

The principal branch of the complex inverse hyperbolic sine function is defined as:

$\forall z \in \C: \map \Arsinh z := \map \Ln {z + \sqrt {z^2 + 1} }$

where:

$\Ln$ denotes the principal branch of the complex natural logarithm
$\sqrt {z^2 + 1}$ denotes the principal square root of $z^2 + 1$.


Complex Area Hyperbolic Cosine

The principal branch of the complex inverse hyperbolic cosine function is defined as:

$\forall z \in \C: \map \Arcosh z := \map \Ln {z + \sqrt {z^2 - 1} }$

where:

$\Ln$ denotes the principal branch of the complex natural logarithm
$\sqrt {z^2 - 1}$ denotes the principal square root of $z^2 - 1$.


Complex Area Hyperbolic Tangent

The principal branch of the complex inverse hyperbolic tangent function is defined as:

$\forall z \in \C: \map \Artanh z := \dfrac 1 2 \, \map \Ln {\dfrac {1 + z} {1 - z} }$

where $\Ln$ denotes the principal branch of the complex natural logarithm.


Complex Area Hyperbolic Cotangent

The principal branch of the complex inverse hyperbolic cotangent function is defined as:

$\forall z \in \C: \map \Arcoth z := \dfrac 1 2 \map \Ln {\dfrac {z + 1} {z - 1} }$

where $\Ln$ denotes the principal branch of the complex natural logarithm.


Complex Area Hyperbolic Secant

The principal branch of the complex inverse hyperbolic secant function is defined as:

$\forall z \in \C: \map \Arsech z := \map \Ln {\dfrac {1 + \sqrt {1 - z^2} } z}$

where:

$\Ln$ denotes the principal branch of the complex natural logarithm
$\sqrt {1 - z^2}$ denotes the principal square root of $1 - z^2$.


Complex Area Hyperbolic Cosecant

The principal branch of the complex inverse hyperbolic cosecant function is defined as:

$\forall z \in \C_{\ne 0}: \map \Arcsch z := \map \Ln {\dfrac {1 + \sqrt {z^2 + 1} } z}$

where:

$\Ln$ denotes the principal branch of the complex natural logarithm
$\sqrt {z^2 + 1}$ denotes the principal square root of $z^2 + 1$.


Also see