# Definition:Power Series/Complex Domain

## Definition

Let $\xi \in \C$ be a complex number.

Let $\sequence {a_n}$ be a sequence in $\C$.

The series $\ds \sum_{n \mathop = 0}^\infty a_n \paren {z - \xi}^n$, where $z \in \C$ is a variable, is called a (complex) power series in $z$ about the point $\xi$.

## Examples

### Example: $\ds \sum_{n \mathop \ge 0} n z^n$

$S = \ds \sum_{n \mathop \ge 0} n z^n$

has a radius of convergence of $1$.

### Example: $\ds \sum_{n \mathop \ge 0} \dfrac {3^n - 1} {2^n + 1} z^n$

Let $\sequence {a_n}$ be the sequence defined as:

$a_n = \dfrac {3^n - 1} {2^n + 1}$
$S = \ds \sum_{n \mathop \ge 0} a_n z^n$

has a radius of convergence of $\dfrac 2 3$.

### Example: $\ds \sum_{n \mathop \ge 0} \dfrac {\paren {2 n}!} {\paren {n!}^2} z^n$

Let $\sequence {a_n}$ be the sequence defined as:

$a_n = \dfrac {\paren {2 n}!} {\paren {n!}^2} z^n$
$S = \ds \sum_{n \mathop \ge 0} a_n z^n$

has a radius of convergence of $\dfrac 1 4$.

### Example: $\ds \sum_{n \mathop \ge 0} \dfrac {\cos i n} {n^2} z^n$

Let $\sequence {a_n}$ be the sequence defined as:

$a_n = \dfrac {\cos i n} {n^2} z^n$
$S = \ds \sum_{n \mathop \ge 0} a_n z^n$

has a radius of convergence of $\dfrac 1 e$.

## Also see

• Results about complex power series can be found here.