Definition:Constant Polynomial

From ProofWiki
Jump to: navigation, search


Definition

Let $R$ be a commutative ring with unity.

Let $P \in R \left[{x}\right]$ be a polynomial in one variable over $R$.


Definition 1

The polynomial $P$ is a constant polynomial if and only if its coefficients of $x^k$ are zero for $k\geq 1$.


Definition 2

The polynomial $P$ is a constant polynomial if and only if $P$ is either the zero polynomial or has degree $0$.


Definition 3

The polynomial $P$ is a constant polynomial if and only if it is in the image of the canonical embedding $R \to R \left[{x}\right]$.


Also see