Definition:Constructed Semantics/Instance 3/Rule of Idempotence
Jump to navigation
Jump to search
![]() | It has been suggested that this page be renamed. To discuss this page in more detail, feel free to use the talk page. |
Theorem
The Rule of Idempotence:
- $(p \lor p) \implies p$
is a tautology in Instance 3 of constructed semantics.
Proof
By the definitional abbreviation for the conditional:
- $\mathbf A \implies \mathbf B =_{\text{def}} \neg \mathbf A \lor \mathbf B$
the Rule of Idempotence can be written as:
- $\neg \left({p \lor p}\right) \lor p$
This evaluates as follows:
- $\begin{array}{|cccc|c|c|} \hline \neg & (p & \lor & p) & \lor & p \\ \hline 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 & 0 & 2 \\ \hline \end{array}$
$\blacksquare$