Definition:Constructed Semantics/Instance 4

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\LL_0$ be the language of propositional logic.

The constructed semantics $\mathscr C_4$ for $\LL_0$ is used for the following results:


Structures

Define the structures of $\mathscr C_4$ as mappings $v$ by the Principle of Recursive Definition, as follows.

Let $\PP_0$ be the vocabulary of $\LL_0$.

Let a mapping $v: \PP_0 \to \set {0, 1, 2, 3}$ be given.

Next, regard the following as definitional abbreviations:

\((1)\)   $:$   Conjunction       \(\ds \mathbf A \land \mathbf B \)   \(\ds \stackrel {\text{def} } = \)   \(\ds \map \neg {\neg \mathbf A \lor \neg \mathbf B} \)      
\((2)\)   $:$   Conditional       \(\ds \mathbf A \implies \mathbf B \)   \(\ds \stackrel {\text{def} } = \)   \(\ds \neg \mathbf A \lor \mathbf B \)      
\((3)\)   $:$   Biconditional       \(\ds \mathbf A \iff \mathbf B \)   \(\ds \stackrel {\text{def} } = \)   \(\ds \paren {\mathbf A \implies \mathbf B} \land \paren {\mathbf B \implies \mathbf A} \)      

It only remains to define $\map v {\neg \phi}$ and $\map v {\phi \lor \psi}$ recursively, by:

\(\ds \map v {\neg \phi}\) \(:=\) \(\ds \begin{cases} 1 & : \text{if } \map v \phi = 0 \\ 0 & : \text{if } \map v \phi = 1 \\ 0 & : \text{if } \map v \phi = 2 \\ 2 & : \text{if } \map v \phi = 3 \end{cases}\)
\(\ds \map v {\phi \lor \psi}\) \(:=\) \(\ds \begin{array}{c|cccc} \phi \lor \psi & 0 & 1 & 2 & 3\\ \hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 \\ 2 & 0 & 2 & 2 & 0 \\ 3 & 0 & 3 & 3 & 3 \end{array}\)


Validity

Define validity in $\mathscr C_4$ by declaring:

$\models_{\mathscr C_4} \phi$ if and only if $\map v \phi = 0$


Examples


Sources