# Definition:Continuous Mapping (Metric Space)/Space

Jump to navigation
Jump to search

## Definition

Let $M_1 = \left({A_1, d_1}\right)$ and $M_2 = \left({A_2, d_2}\right)$ be metric spaces.

Let $f: A_1 \to A_2$ be a mapping from $A_1$ to $A_2$.

### Definition 1

$f$ is **continuous from $\left({A_1, d_1}\right)$ to $\left({A_2, d_2}\right)$** if and only if it is continuous at every point $x \in A_1$.

### Definition 2

$f$ is **continuous from $\left({A_1, d_1}\right)$ to $\left({A_2, d_2}\right)$** if and only if:

- for every $U \subseteq A_2$ which is open in $M_2$, $f^{-1} \left[{U}\right]$ is open in $M_1$.

## Also known as

A mapping which is **continuous from $\left({A_1, d_1}\right)$ to $\left({A_2, d_2}\right)$** can also be referred to as **$\left({d_1, d_2}\right)$-continuous**.