# Definition:Continuous Mapping (Topology)/Point/Filters

Jump to navigation
Jump to search

## Definition

Let $T_1 = \left({S_1, \tau_1}\right)$ and $T_2 = \left({S_2, \tau_2}\right)$ be topological spaces.

Let $f: S_1 \to S_2$ be a mapping from $S_1$ to $S_2$.

Let $x \in S_1$.

The mapping $f$ is **continuous at (the point) $x$** if and only if for any filter $\mathcal F$ on $T_1$ that converges to $x$, the corresponding image filter $f \left({\mathcal F}\right)$ converges to $f \left({x}\right)$.