Definition:Continuous Mapping (Metric Space)/Point

From ProofWiki
Jump to navigation Jump to search

Definition

Let $M_1 = \left({A_1, d_1}\right)$ and $M_2 = \left({A_2, d_2}\right)$ be metric spaces.

Let $f: A_1 \to A_2$ be a mapping from $A_1$ to $A_2$.

Let $a \in A_1$ be a point in $A_1$.


$\epsilon$-$\delta$ Definition

$f$ is continuous at (the point) $a$ (with respect to the metrics $d_1$ and $d_2$) if and only if:

$\forall \epsilon \in \R_{>0}: \exists \delta \in \R_{>0}: \forall x \in A_1: \map {d_1} {x, a} < \delta \implies \map {d_2} {\map f x, \map f a} < \epsilon$

where $\R_{>0}$ denotes the set of all strictly positive real numbers.


Definition by Limits

$f$ is continuous at (the point) $a$ (with respect to the metrics $d_1$ and $d_2$) if and only if:

$(1): \quad$ The limit of $f \left({x}\right)$ as $x \to a$ exists
$(2): \quad \displaystyle \lim_{x \to a} f \left({x}\right) = f \left({a}\right)$.


$\epsilon$-Ball Definition

$f$ is continuous at (the point) $a$ (with respect to the metrics $d_1$ and $d_2$) if and only if:

$\forall \epsilon \in \R_{>0}: \exists \delta \in \R_{>0}: f \left[{B_\delta \left({a; d_1}\right)}\right] \subseteq B_\epsilon \left({f \left({a}\right); d_2}\right)$

where $B_\epsilon \left({f \left({a}\right); d_2}\right)$ denotes the open $\epsilon$-ball of $f \left({a}\right)$ with respect to the metric $d_2$, and similarly for $B_\delta \left({a; d_1}\right)$.


Definition by Neighborhoods

$f$ is continuous at (the point) $a$ (with respect to the metrics $d_1$ and $d_2$) if and only if:

for each neighborhood $N'$ of $f \left({a}\right)$ in $M_2$ there exists a corresponding neighborhood $N$ of $a$ in $M_1$ such that $f \left[{N}\right] \subseteq N'$.


Also known as

A mapping which is continuous at $a$ with respect to $d_1$ and $d_2$ can also be referred to as $\left({d_1, d_2}\right)$-continuous at $a$.


Also see