# Definition:Convergence Almost Everywhere

## Definition

Let $\left({X, \Sigma, \mu}\right)$ be a measure space.

Let $D \in \Sigma$.

Let $f: D \to \R$ be a $\Sigma$-measurable function.

Let $\left({f_n}\right)_{n \in \N}$ be a sequence of $\Sigma$-measurable functions $f_n: D \to \R$.

Then $\left({f_n}\right)_{n \in \N}$ is said to **converge almost everywhere** (or **converge a.e.**) on $D$ to $f$ if and only if:

- $\mu \left({ \left\{{x \in D : f_n \left({x}\right) \text{ does not converge to } f \left({x}\right) }\right\} }\right) = 0$

and we write $f_n \stackrel{a.e.}{\to} f$.

In other words, the sequence of functions converges pointwise outside of a $\mu$-null set.

## Also see

- Convergence a.u. Implies Convergence a.e.. A partial converse to this result is given by Egorov's Theorem.

## Relations to Other Modes of Convergence

Convergence a.e. is also implied by pointwise convergence.

Convergence a.e. implies convergence in measure.