Definition:Convergent Sequence/Topology/Definition 2
Jump to navigation
Jump to search
Definition
Let $T = \struct {S, \tau}$ be a topological space.
Let $A \subseteq S$.
Let $\sequence {x_n}_{n \mathop \in \N}$ be an infinite sequence in $A$.
Then $\sequence {x_n}$ converges to the limit $\alpha \in S$ if and only if:
- $\forall U \in \tau: \alpha \in U \implies \set {n \in \N: x_n \notin U}$ is finite.
Sources
- 1978: Lynn Arthur Steen and J. Arthur Seebach, Jr.: Counterexamples in Topology (2nd ed.) ... (previous) ... (next): Part $\text I$: Basic Definitions: Section $1$: General Introduction: Limit Points