Definition:Degree of Polynomial/Null Polynomial/Integral Domain
< Definition:Degree of Polynomial | Null Polynomial(Redirected from Definition:Degree of Null Polynomial over Integral Domain)
Definition
Let $\left({R, +, \circ}\right)$ be a commutative ring with unity whose zero is $0_R$.
Let $\left({D, +, \circ}\right)$ be an integral subdomain of $R$.
For arbitrary $x \in R$, let $D \left[{x}\right]$ be the ring of polynomials in $x$ over $D$.
The null polynomial $0_R \in D \left[{x}\right]$ does not have a degree.
Also defined as
Some sources assign the value of $-\infty$ to the degree of the null polynomial.
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 64$: Remarks $\text{(a)}$