Definition:Degree of Polynomial/Integral Domain

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {R, +, \circ}$ be a commutative ring with unity whose zero is $0_R$.

Let $\struct {D, +, \circ}$ be an integral subdomain of $R$.

Let $X \in R$ be transcendental over $D$.


Let $\displaystyle f = \sum_{j \mathop = 0}^n \paren {r_j \circ X^j} = r_0 + r_1 X + \cdots + r_n X^n$ be a polynomial over $D$ in $X$ such that $r_n \ne 0$.


Then the degree of $f$ is $n$.


The degree of $f$ is denoted on $\mathsf{Pr} \infty \mathsf{fWiki}$ by $\map \deg f$.


Also known as

The degree of a polynomial is also referred to by some sources as its order.

Some sources denote the degree of a polynomial by $\partial f$


Sources