Definition:Derivative/Real Function/Derivative at Point/Definition 2

From ProofWiki
Jump to: navigation, search

Definition

Let $I$ be an open real interval.

Let $f: I \to \R$ be a real function defined on $I$.

Let $\xi \in I$ be a point in $I$.

Let $f$ be differentiable at the point $\xi$.

That is, suppose the limit $\displaystyle \lim_{h \mathop \to 0} \frac {f \left({\xi + h}\right) - f \left({\xi}\right)} h$ exists.


Then this limit is called the derivative of $f$ at the point $\xi$.


Also see


Sources