# Definition:Determinant/Matrix/Definition 2

Jump to navigation Jump to search

## Definition

Let $\mathbf A = \sqbrk a_n$ be a square matrix of order $n$.

That is, let:

$\mathbf A = \begin {bmatrix} a_{1 1} & a_{1 2} & \cdots & a_{1 n} \\ a_{2 1} & a_{2 2} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \\ \end {bmatrix}$

The determinant of $\mathbf A$ is defined as follows:

For $n = 1$, the order $1$ determinant is defined as:

$\begin {vmatrix} a_{1 1} \end {vmatrix} = a_{1 1}$

Thus the determinant of an order $1$ matrix is that element itself.

For $n > 1$, the determinant of order $n$ is defined recursively as:

$\displaystyle \map \det {\mathbf A} := \begin {vmatrix} a_{1 1} & a_{1 2} & a_{1 3} & \cdots & a_{1 n} \\ a_{2 1} & a_{2 2} & a_{2 3} & \cdots & a_{2 n} \\ a_{3 1} & a_{3 2} & a_{3 3} & \cdots & a_{3 n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n} \\ \end {vmatrix} = a_{1 1} \begin {vmatrix} a_{2 2} & a_{2 3} & \cdots & a_{2 n} \\ a_{3 2} & a_{3 3} & \cdots & a_{3 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 2} & a_{n 3} & \cdots & a_{n n} \\ \end {vmatrix} - a_{1 2} \begin {vmatrix} a_{2 1} & a_{2 3} & \cdots & a_{2 n} \\ a_{3 1} & a_{3 3} & \cdots & a_{3 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 3} & \cdots & a_{n n} \\ \end {vmatrix} + \cdots + \paren {-1}^{n + 1} a_{1 n} \begin {vmatrix} a_{2 1} & a_{2 2} & \cdots & a_{2, n - 1} \\ a_{3 1} & a_{3 3} & \cdots & a_{3, n - 1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 3} & \cdots & a_{n, n - 1} \\ \end {vmatrix}$

### In Full

When written out in full, the determinant of $\mathbf A$ is denoted:

$\map \det {\mathbf A} = \begin {vmatrix} a_{1 1} & a_{1 2} & \cdots & a_{1 n} \\ a_{2 1} & a_{2 2} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n} \\ \end {vmatrix}$

### Order

The order of a determinant is defined as the order of the square matrix on which it is defined.

## Also denoted as

The notation $\size {\mathbf A}$ can be used for $\map \det {\mathbf A}$ but this may be prone to ambiguity.

Some sources omit the brackets: $\det \mathbf A$.

Where ambiguity does not result, either style is acceptable on $\mathsf{Pr} \infty \mathsf{fWiki}$.

## Also defined as

While a determinant is a number which is associated with a square matrix, the use of the term for the actual array itself is frequently seen.

Thus we can discuss, for example, the elements, columns and rows of a determinant.

So, similarly to square matrix, we can discuss a determinant of order $n$.

## Also known as

This definition of the determinant is often seen referred to as expansion by the first row.

As is shown in Expansion Theorem for Determinants, any row and any column can be used as convenient.

## Also see

• Results about determinants can be found here.