Definition:Determinant/Matrix/Order 1
Jump to navigation
Jump to search
Definition
Let $\mathbf A = \sqbrk a_1$ be a square matrix of order $1$.
That is, let:
- $\mathbf A = \begin {bmatrix} a_{1 1} \end {bmatrix}$
Then the determinant of $\mathbf A$ is defined as:
- $\begin {vmatrix} a_{1 1} \end {vmatrix} = a_{1 1}$
Thus the determinant of an order $1$ matrix is that element itself.
Sources
- 1998: Richard Kaye and Robert Wilson: Linear Algebra ... (previous) ... (next): Part $\text I$: Matrices and vector spaces: $1$ Matrices: $1.6$ Determinant and trace
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): determinant