Definition:Determinant/Linear Operator

From ProofWiki
Jump to: navigation, search

Definition

Let $V$ be a finite-dimensional vector space over a field $K$.

Let $A: V \to V$ be a linear operator of $V$.


The determinant $\det \left({A}\right)$ of $A$ is defined to be the determinant of any matrix of $A$ relative to some basis.


Also see