Definition:Determinant/Matrix/Order 2

From ProofWiki
Jump to: navigation, search

Definition

Let $\mathbf A = \left[{a}\right]_2$ be a square matrix of order $2$.

That is, let:

$\mathbf A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$


Then the determinant of $\mathbf A$ is defined as:

$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \operatorname{sgn} \left({1, 2}\right) a_{1 1} a_{2 2} + \operatorname{sgn} \left({2, 1}\right) a_{1 2} a_{2 1} = a_{1 1} a_{2 2} - a_{1 2} a_{2 1}$


where $\operatorname{sgn}$ denotes the sign of the permutation.


Sources