Definition:Dipper Operation
Definition
Let $m \in \N$ be a natural number.
Let $n \in \N_{>0}$ be a non-zero natural number.
Let $\N_{< \paren {m \mathop + n} }$ denote the initial segment of the natural numbers:
- $\N_{< \paren {m \mathop + n} } := \set {0, 1, \ldots, m + n - 1}$
The dipper operation $+_{m, n}$ is the binary operation on $\N_{< \paren {m \mathop + n} }$ defined as:
- $\forall a, b \in \N_{< \paren {m \mathop + n} }: a +_{m, n} b = \begin{cases} a + b & : a + b < m \\ a + b - k n & : a + b \ge m \end{cases}$
where $k$ is the largest integer satisfying:
- $m + k n \le a + b$
Illustration
When the stars of the Big Dipper are numbered as shown, the sequence:
- $1, 1 +_{3, 4} 1, 1 +_{3, 4} 1 +_{3, 4} 1, \ldots$
traces out those stars in the order:
- first the handle: $\text{Alkaid}, \text{Mizar}, \text{Alioth}$
then:
- round the pan indefinitely: $\text{Megrez}, \text{Dubhe}, \text{Merak}, \text{Phecda}, \text{Megrez}, \ldots$
Hence $a +_{m, n} b$ can be interpreted as:
- Start at $\text{Alkaid}$ and count $a$ stars along the handle and then clockwise round the pan.
- Then count $b$ stars more from there.
- $a +_{m, n} b$ is the number of the star you land on.
Examples
Example: $m = 0$
Let $m = 0$.
Then $+_{m, n}$ degenerates to modulo addition modulo $n$ on $\N_{<n}$:
- $\forall a, b \in \N_{<n}: a +_n b = a + b - k n$
where $k$ is the largest integer satisfying:
- $k n \le a + b$
Example: $n = 1$
Let $n = 1$.
Then $+_{m, n}$ degenerates to the following operation on $\N_{< \paren {m \mathop + n} }$:
- $\forall a, b \in \N_{< \paren {m \mathop + n} }: a +_{m, 1} b = \begin{cases} a + b & : a + b < m \\ m & : a + b \ge m \end{cases}$
Example: $+_{3, 4}$
Let $m = 3$ and $n = 4$.
The Cayley table for $+_{3, 4}$ can be presented as follows:
$\quad \begin{array}{r|rrrrrrr} +_m & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 1 & 2 & 3 & 4 & 5 & 6 & 3 \\ 2 & 2 & 3 & 4 & 5 & 6 & 3 & 4 \\ 3 & 3 & 4 & 5 & 6 & 3 & 4 & 5 \\ 4 & 4 & 5 & 6 & 3 & 4 & 5 & 6 \\ 5 & 5 & 6 & 3 & 4 & 5 & 6 & 3 \\ 6 & 6 & 3 & 4 & 5 & 6 & 3 & 4 \\ \end{array}$
Also see
- Results about dipper operations can be found here.
Linguistic Note
The term dipper operation was invented by $\mathsf{Pr} \infty \mathsf{fWiki}$ in order to be referred to compactly in conjunction with the dipper semigroup.
As such, it is not generally expected to be seen in this context outside $\mathsf{Pr} \infty \mathsf{fWiki}$.
The term dipper was coined by Seth Warner in the context of inductive semigroups.
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 2$: Compositions: Exercise $2.8$