Definition:Discontinuous Mapping/Topological Space
Jump to navigation
Jump to search
Definition
At a Point
Let $T_1 = \left({A_1, \tau_1}\right)$ and $T_2 = \left({A_2, \tau_2}\right)$ be topological spaces.
Let $f: A_1 \to A_2$ $x \in T_1$ be a mapping from $A_1$ to $A_2$.
Then by definition $f$ is continuous at $x$ if for every neighborhood $N$ of $f \left({x}\right)$ there exists a neighborhood $M$ of $x$ such that $f \left({M}\right) \subseteq N$.
Therefore, $f$ is discontinuous at $x$ if for some neighbourhood $N$ of $f \left({x}\right)$ and every neighbourhood $M$ of $x$, $f \left({M}\right) \nsubseteq N$.
The point $x$ is called a discontinuity of $f$.
![]() | This definition needs to be completed. In particular: discontinuous on a set You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding or completing the definition. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{DefinitionWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |