Definition:Discrete Uniform Distribution

From ProofWiki
Jump to: navigation, search

Definition

Let $X$ be a discrete random variable on a probability space.


Then $X$ has a discrete uniform distribution with parameter $n$ if:

$\Img X = \set {1, 2, \ldots, n}$
$\map \Pr {X = k} = \dfrac 1 n$


That is, there is a number of outcomes with an equal probability of occurrence.

This is written:

$X \sim \DiscreteUniform n$


This distribution trivially gives rise to a probability mass function satisfying $\map \Pr \Omega = 1$, because:

$\displaystyle \sum_{k \mathop \in \Omega_X} \frac 1 n = \sum_{k \mathop = 1}^n \frac 1 n = n \frac 1 n = 1$


Thus it serves as a model for a discrete probability space with equiprobable outcomes.


Also see

  • Results about the discrete uniform distribution can be found here.


Technical Note

The $\LaTeX$ code for \(\DiscreteUniform {n}\) is \DiscreteUniform {n} .

When the argument is a single character, it is usual to omit the braces:

\DiscreteUniform n