Definition:Dot Product/General Context
Jump to navigation
Jump to search
Definition
Let $\mathbf a$ and $\mathbf b$ be vectors in a vector space $\mathbf V$ of $n$ dimensions:
\(\ds \mathbf a\) | \(=\) | \(\ds \sum_{k \mathop = 1}^n a_k \mathbf e_k\) | ||||||||||||
\(\ds \mathbf b\) | \(=\) | \(\ds \sum_{k \mathop = 1}^n b_k \mathbf e_k\) |
where $\tuple {\mathbf e_1, \mathbf e_2, \ldots, \mathbf e_n}$ is the standard ordered basis of $\mathbf V$.
The dot product of $\mathbf a$ and $\mathbf b$ is defined as:
\(\ds \mathbf a \cdot \mathbf b\) | \(:=\) | \(\ds \sum_{k \mathop = 1}^n a_k b_k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a_1 b_1 + a_2 b_2 + \cdots + a_n b_n = \sum_{i \mathop = 1}^n a_i b_i\) |
If the vectors are represented as column matrices:
- $\mathbf a = \begin {bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end {bmatrix} , \mathbf b = \begin {bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end {bmatrix}$
we can express the dot product as:
- $\mathbf a \cdot \mathbf b = \mathbf a^\intercal \mathbf b$
where:
- $\mathbf a^\intercal = \begin {bmatrix} a_1 & a_2 & \cdots & a_n \end {bmatrix}$ is the transpose of $\mathbf a$
- the operation between the matrices is the matrix product.
Also see
Sources
- 1927: C.E. Weatherburn: Differential Geometry of Three Dimensions: Volume $\text { I }$ ... (previous) ... (next): Introduction: Vector Notation and Formulae: Products of Vectors
- 1951: B. Hague: An Introduction to Vector Analysis (5th ed.) ... (previous) ... (next): Chapter $\text {II}$: The Products of Vectors: $2$. The Scalar Product: $(2.10)$
- 1957: D.E. Rutherford: Vector Methods (9th ed.) ... (previous) ... (next): Chapter $\text I$: Vector Algebra: $\S 2$. $(4)$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 22$: Dot or Scalar Product: $22.10$
- 1969: J.C. Anderson, D.M. Hum, B.G. Neal and J.H. Whitelaw: Data and Formulae for Engineering Students (2nd ed.) ... (previous) ... (next): $4.$ Mathematics: $4.1$ Vector Algebra
- 1970: George Arfken: Mathematical Methods for Physicists (2nd ed.) ... (previous) ... (next): Chapter $1$ Vector Analysis $1.3$ Scalar or Dot Product: $(1.22)$
- 1980: A.J.M. Spencer: Continuum Mechanics ... (previous) ... (next): $2.2$: The summation convention
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): scalar product
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): scalar product
- 2020: James C. Robinson: Introduction to Functional Analysis ... (previous) ... (next) $8.1$: Inner Products