# Definition:Elementary Equivalence

Jump to navigation
Jump to search

## Definition

Let $\MM, \NN$ be $\LL$-structures.

We say that $\MM$ and $\NN$ are **elementarily equivalent** if for all $\LL$-sentences $\phi$, we have $\MM \models \phi$ if and only if $\NN \models \phi$.

This article is complete as far as it goes, but it could do with expansion.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding this information.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Expand}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

This article needs to be linked to other articles.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{MissingLinks}}` from the code. |

There are no source works cited for this page.Source citations are highly desirable, and mandatory for all definition pages.Definition pages whose content is wholly or partly unsourced are in danger of having such content deleted. To discuss this page in more detail, feel free to use the talk page. |