Definition:Elliptic Integral

From ProofWiki
Jump to navigation Jump to search

Special Function

An elliptic integral is an integral in the form:

$\ds \int_0^x \map R {t, \sqrt {\map P t} } \rd t$

where:

$\map P t$ is a polynomial of degree $3$ or $4$
$\map R {t, \sqrt {\map P t} }$ is a rational function of $t$ and $\sqrt {\map P t}$.


There exist some special cases:


Elliptic Integral of the First Kind

Incomplete Elliptic Integral of the First Kind

$\ds \map F {k, \phi} = \int \limits_0^\phi \frac {\d \phi} {\sqrt {1 - k^2 \sin^2 \phi} }$

is the incomplete elliptic integral of the first kind, and is a function of the variables:

$k$, defined on the interval $0 < k < 1$
$\phi$, defined on the interval $0 \le \phi \le \pi / 2$.


Complete Elliptic Integral of the First Kind

$\ds \map K k = \int \limits_0^{\pi / 2} \frac {\d \phi} {\sqrt {1 - k^2 \sin^2 \phi} }$

is the complete elliptic integral of the first kind, and is a function of $k$, defined on the interval $0 < k < 1$.


Elliptic Integral of the Second Kind

Incomplete Elliptic Integral of the Second Kind

$\ds \map E {k, \phi} = \int \limits_0^\phi \sqrt {1 - k^2 \sin^2 \phi} \rd \phi$

is the incomplete elliptic integral of the second kind, and is a function of the variables:

$k$, defined on the interval $0 < k < 1$
$\phi$, defined on the interval $0 \le \phi \le \pi / 2$.


Complete Elliptic Integral of the Second Kind

$\ds \map E k = \int \limits_0^{\pi / 2} \sqrt {1 - k^2 \sin^2 \phi} \rd \phi$

is the complete elliptic integral of the second kind, and is a function of $k$, defined on the interval $0 < k < 1$.


Elliptic Integral of the Third Kind

Incomplete Elliptic Integral of the Third Kind

$\ds \map \Pi {k, n, \phi} = \int \limits_0^\phi \frac {\d \phi} {\paren {1 + n \sin^2 \phi} \sqrt{1 - k^2 \sin^2 \phi} }$

is the incomplete elliptic integral of the third kind, and is a function of the variables:

$k$, defined on the interval $0 < k < 1$
$n \in \Z$
$\phi$, defined on the interval $0 \le \phi \le \pi / 2$.


Complete Elliptic Integral of the Third Kind

$\ds \map \Pi {k, n} = \int \limits_0^{\pi / 2} \frac {\d \phi} {\paren {1 + n \sin^2 \phi} \sqrt {1 - k^2 \sin^2 \phi} }$

is the complete elliptic integral of the third kind, and is a function of the variables:

$k$, defined on the interval $0 < k < 1$
$n \in \Z$


Sources