Definition:Elliptic Integral of the Second Kind/Incomplete/Definition 2

From ProofWiki
Jump to navigation Jump to search

Special Function

$\displaystyle E \left({k, \phi}\right) = \int \limits_0^x \dfrac {\sqrt{1 - k^2 v^2} } {\sqrt{1 - v^2}} \, \mathrm d v$

is the incomplete elliptic integral of the second kind, and is a function of the variables:

$k$, defined on the interval $0 < k < 1$
$x = \sin \phi$, where $\phi$ is defined on the interval $0 \le \phi \le \pi / 2$.


Also see


Sources