Definition:Euler-Mascheroni Constant/Decimal Expansion
Jump to navigation
Jump to search
Decimal Expansion
The decimal expansion of the Euler-Mascheroni constant $\gamma$ starts:
- $\gamma \approx 0 \cdotp 57721 \, 56649 \, 01532 \, 86060 \, 65120 \, 90082 \, 40243 \, 1 \ldots$
This sequence is A001620 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).
Sources
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): Table $1.1$. Mathematical Constants
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 1$: Special Constants: $1.20$
- 1983: François Le Lionnais and Jean Brette: Les Nombres Remarquables ... (previous) ... (next): $0,57721 56649 \ldots$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $0 \cdotp 577 \, 215 \, 664 \, 901 \, 532 \, 860 \, 606 \, 512 \, 090 \, 082 \, 402 \, 431 \ldots$
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.7$: Harmonic Numbers
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $0 \cdotp 57721 \, 56649 \, 01532 \, 86060 \, 65120 \, 90082 \, 40243 \, 1 \ldots$