Definition:Extended Pascal's Triangle

From ProofWiki
Jump to navigation Jump to search

Theorem

Pascal's triangle can be extended for binomial coefficients of negative integers as follows:


$\begin{array}{r|rrrrrrrrrr} n & \binom n 0 & \binom n 1 & \binom n 2 & \binom n 3 & \binom n 4 & \binom n 5 & \binom n 6 & \binom n 7 & \binom n 8 & \binom n 9 & \binom n {10} & \binom n {11} & \binom n {12} \\ \hline -3 & 1 & -3 & 6 & -10 & 15 & -21 & 28 & -36 & 45 & -55 & 66 & -78 & 91 \\ -2 & 1 & -2 & 3 & -4 & 5 & -6 & 7 & -8 & 9 & -10 & 11 & -12 & 13 \\ -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\

0 & 1 &  0 &  0 &   0 &   0 &   0 &   0 &   0 &   0 &   0  &   0 &   0 &   0 \\
1 & 1 &  1 &  0 &   0 &   0 &   0 &   0 &   0 &   0 &   0  &   0 &   0 &   0 \\
2 & 1 &  2 &  1 &   0 &   0 &   0 &   0 &   0 &   0 &   0  &   0 &   0 &   0 \\
3 & 1 &  3 &  3 &   1 &   0 &   0 &   0 &   0 &   0 &   0  &   0 &   0 &   0 \\
4 & 1 &  4 &  6 &   4 &   1 &   0 &   0 &   0 &   0 &   0  &   0 &   0 &   0 \\
5 & 1 &  5 & 10 &  10 &   5 &   1 &   0 &   0 &   0 &   0  &   0 &   0 &   0 \\
6 & 1 &  6 & 15 &  20 &  15 &   6 &   1 &   0 &   0 &   0  &   0 &   0 &   0 \\

\end{array}$


Construction

The numbers for negatively indexed binomial coefficients can be found by application of Pascal's Rule:

$\dbinom n k = \dbinom {n + 1} k - \dbinom n {k - 1}$

From Binomial Coefficient with Zero, we have:

$\forall n \in \Z: \dbinom n 0 = 1$

Thus:

\(\ds \dbinom {-1} 1\) \(=\) \(\ds \dbinom 0 1 - \dbinom {-1} 0\)
\(\ds \) \(=\) \(\ds 0 - 1\)
\(\ds \) \(=\) \(\ds -1\)


\(\ds \dbinom {-1} 2\) \(=\) \(\ds \dbinom 0 2 - \dbinom {-1} 1\)
\(\ds \) \(=\) \(\ds 0 - \left({-1}\right)\)
\(\ds \) \(=\) \(\ds 1\)

and so on.

$\blacksquare$


Sources