Definition:Extremal Embedding in Field of Functional

From ProofWiki
Jump to navigation Jump to search

Definition

Let $J$ be a functional such that:

$\displaystyle J \sqbrk {\mathbf y} = \int_a^b \map F {x, \mathbf y, \mathbf y'} \rd x$

Let $\gamma$ be an extremal of $J$.



Let $R$ be a simply connected open region which contains $\gamma$ as a subset.



Let a field of functional $J$ be defined at every point of $R$.

Let one of the trajectories of the field be $\gamma$.


Then $\gamma$ can be embedded in a field of functional $J$.



Sources