Definition:Field Adjoined Element

From ProofWiki
Jump to navigation Jump to search

Definition

Let $E/F$ be a field extension, $\alpha \in E$.

Then:

$F[\alpha] $ denotes the smallest subring of $E$ containing $F \cup \alpha$.
$F(\alpha) $ denotes the smallest subfield of $E$ containing $F \cup \alpha$. We say this as $F$ adjoined with $\alpha$.