Definition:Finite Measure/Signed Measure

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\struct {X, \Sigma}$ be a measurable space.

Let $\mu$ be a signed measure on $\struct {X, \Sigma}$.


We say that $\mu$ is a finite signed measure if and only if:

$\size {\map \mu X} < \infty$


Sources