Definition:Fourier Series/Fourier Coefficient/Range 2 Pi
Definition
Let $f: \R \to \R$ be a function such that $\ds \int_\alpha^{\alpha + 2 \pi} \map f x \rd x$ converges absolutely.
Let:
- $\ds \frac {a_0} 2 + \sum_{n \mathop = 1}^\infty \paren {a_n \cos n x + b_n \sin n x}$
be the Fourier series for $f$.
The constants:
- $a_0, a_1, a_2, \ldots, a_n, \ldots; b_1, b_2, \ldots, b_n, \ldots$
are the Fourier coefficients of $f$.
Source of Name
This entry was named for Joseph Fourier.
Historical Note
Despite the fact that the Fourier series bears the name of Joseph Fourier, they were first studied by Leonhard Paul Euler.
Fourier himself made considerable use of this series during the course of his analysis of the behaviour of heat.
The first person to feel the need for a careful study of its convergence was Augustin Louis Cauchy.
In $1829$, Johann Peter Gustav Lejeune Dirichlet gave the first satisfactory proof about the sums of Fourier series for certain types of function.
The criteria set by Dirichlet were extended and generalized by Riemann in his $1854$ paper Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe.
Sources
- 1961: I.N. Sneddon: Fourier Series ... (previous) ... (next): Chapter One: $\S 2$. Fourier Series
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Fourier coefficients
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Fourier coefficients
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Fourier coefficients
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Fourier coefficients