Definition:Generated Submodule
Jump to navigation
Jump to search
Definition
Let $R$ be a ring.
Let $M$ be an $R$-module.
Let $S\subset M$ be a subset of $M$.
$R$-module
The submodule generated by $S$ is the intersection of all submodules of $M$ containing $S$.
Unitary $R$-Module
Let $R$ be a ring with unity.
Let $M$ be a unitary $R$-module.
The submodule generated by $S$ is the set of all linear combinations of elements of $S$.
Linear Span in Vector Space
Let $K$ be a division ring or a field.
Let $V$ be a vector space over $K$.
Let $A \subseteq V$ be a subset of $V$.
Then the linear span of $A$, denoted $\span A$ or $\map \span A$, is the set of all linear combinations (of finite length) of vectors in $A$.