Definition:Golden Mean/Definition 2

From ProofWiki
Jump to: navigation, search

Definition

The golden mean is the unique positive real number $\phi$ satisfying:

$\phi = \dfrac {1 + \sqrt 5} 2$


Decimal Expansion

The decimal expansion of the golden mean starts:

$\phi \approx 1 \cdotp 61803 \, 39887 \, 49894 \, 84820 \, 45868 \, 34365 \, 63811 \, 77203 \, 09179 \, 80576 \ldots$

This sequence is A001622 in the On-Line Encyclopedia of Integer Sequences (N. J. A. Sloane (Ed.), 2008).


Also see


Sources