Definition:Gradient Operator/Real Cartesian Space/Region

From ProofWiki
Jump to navigation Jump to search


Let $\R^n$ denote the real Cartesian space of $n$ dimensions.

Let $S \subseteq \R^n$.

Let $\sqbrk {X \to Y}$ be the space of functions from $X$ to $Y$.

Suppose that for all $\mathbf x \in S$, $\map {\nabla f} {\mathbf x}$ exists.

The gradient can then be defined as an operation acting on $f$:

$\nabla: \mathbf F \to \sqbrk {S \to \R^n}$
$\paren {f: \mathbf x \mapsto \map f {\mathbf x} } \mapsto \paren {\nabla f: \mathbf x \mapsto \map {\nabla f} {\mathbf x} }$


$\mathbf F = \set {f \in \sqbrk {S \to \R}: \nabla f \text{ is defined} }$

That is:

\(\ds \nabla f\) \(=\) \(\ds \begin {bmatrix} \frac {\partial f} {\partial x_1} \\ \frac {\partial f} {\partial x_2} \\ \vdots \\ \frac {\partial f} {\partial x_n} \end {bmatrix}\)