Definition:Group Product

From ProofWiki
Jump to: navigation, search


Let $\left({G, \circ}\right)$ be a group.

The operation $\circ$ is referred to in this context as the group product or just product.

Examples of Operations on Group Product

Example: $b x a^{-1} = a^{-1} b$

$b x a^{-1} = a^{-1} b$

Example: $a x a^{-1} = e$

$a x a^{-1} = e$

Example: $a x a^{-1} = a$

$a x a^{-1} = a$

Example: $a x b = c$

$a x b = c$

Example: $b a^{-1} x a b^{-1} = b a$

$b a^{-1} x a b{^-1} = b a$