Definition:Hamiltonian
Jump to navigation
Jump to search
Definition
Let $J \sqbrk {\dotsm y_i \dotsm}$ be a functional of the form:
- $\displaystyle J \sqbrk {\dotsm y_i \dotsm} = \intlimits {\int_{x_0}^{x_1} \map F {x, \cdots y_i \dotsm, \dotsm y_i \dotsm} \rd x} {i \mathop = 1} {i \mathop = n}$
Then the Hamilonian $H$ corresponding to $J \sqbrk {\dotsm y_i \dotsm}$ is defined as
- $\displaystyle H = -F + \sum_{i \mathop = 1}^n y_i' F_{y_i'}$
Source of Name
This entry was named for William Rowan Hamilton.
Sources
- 1963: I.M. Gelfand and S.V. Fomin: Calculus of Variations ... (previous) ... (next): $\S 3.13$: Derivation of the Basic Formula
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Entry: Hamiltonian
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Entry: Hamiltonian
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Entry: Hamiltonian
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Entry: Hamiltonian