Definition:Hilbert 23/12

From ProofWiki
Jump to navigation Jump to search

Hilbert $23$: Problem $12$

Extension of Kronecker-Weber Theorem to any base Number Field

Extend the Kronecker-Weber Theorem on abelian extensions of the rational numbers to any base number field.

Extension of Kronecker-Weber Theorem to any base Number Field

Historical Note

The Hilbert 23 were delivered by David Hilbert in a famous address at Paris in $1900$.

He considered them to be the oustanding challenges to mathematicians in the future.


There was originally going to be a $24$th problem, on a criterion for simplicity and general methods in proof theory, but Hilbert decided not to include it, as it was (like numbers $4$, $6$, $16$ and $23$) too vague to ever be described as "solved".