Definition:Hom Functor

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\mathbf{Set}$ be the category of sets.

Let $\mathbf C$ be a locally small category.

Hom Bifunctor

The hom bifunctor on $\mathbf C$ is the covariant functor $\map {\operatorname {Hom} } {-, -} : \mathbf C^{\operatorname {op} } \times \mathbf C \to \mathbf {Set}$ from the product with the opposite category to the category of sets such that:

$(1): \quad \map {\operatorname {Hom} } {a, b}$ is the hom class
$(2): \quad$ If $\tuple {f^{\operatorname {op} }, g}: \tuple {a, b} \to \tuple {c, d}$ is a morphism, $\map {\operatorname {Hom} } {f^{\operatorname{op} }, g}: \map {\operatorname {Hom} } {a, b} \to \map {\operatorname {Hom} } {c, d}$ is $f_* \circ g^*$, the postcomposition with $g$ composed with the precomposition with $f$.


Covariant Hom Functor

Let $C \in \mathbf C_0$ be an object of $\mathbf C$.


The covariant hom functor based at $C$, $\operatorname{Hom}_{\mathbf C} \left({C, \cdot}\right): \mathbf C \to \mathbf{Set}$, is the covariant functor defined by:

Object functor:    \(\ds \operatorname{Hom}_{\mathbf C} \left({C, D}\right) = \operatorname{Hom}_{\mathbf C} \left({C, D}\right) \)      
Morphism functor:    \(\ds \operatorname{Hom}_{\mathbf C} \left({C, f}\right): \operatorname{Hom}_{\mathbf C} \left({C, A}\right) \to \operatorname{Hom}_{\mathbf C} \left({C, B}\right), g \mapsto f \circ g \)      for $f: A \to B$

where $\operatorname{Hom}_{\mathbf C} \left({C, D}\right)$ denotes a hom set.

Thus, the morphism functor is defined to be postcomposition.


Contravariant Hom Functor

Let $C \in \mathbf C_0$ be an object of $\mathbf C$.


The contravariant hom functor based at $C$:

$\operatorname{Hom}_{\mathbf C} \left({\cdot, C}\right): \mathbf C \to \mathbf{Set}$

is the covariant functor defined by:

Object functor:    \(\ds \operatorname{Hom}_{\mathbf C} \left({B, C}\right) = \operatorname{Hom}_{\mathbf C} \left({B, C}\right) \)      
Morphism functor:    \(\ds \operatorname{Hom}_{\mathbf C} \left({f, C}\right): \operatorname{Hom}_{\mathbf C} \left({B, C}\right) \to \operatorname{Hom}_{\mathbf C} \left({A, C}\right), g \mapsto g \circ f \)      for $f: A \to B$

where $\operatorname{Hom}_{\mathbf C} \left({B, C}\right)$ denotes a hom set.

Thus, the morphism functor is defined to be precomposition.




Also see