# Definition:Homeomorphism/Topological Spaces/Definition 3

Jump to navigation
Jump to search

## Definition

Let $T_\alpha = \left({S_\alpha, \tau_\alpha}\right)$ and $T_\beta = \left({S_\beta, \tau_\beta}\right)$ be topological spaces.

Let $f: T_\alpha \to T_\beta$ be a bijection.

$f$ is a **homeomorphism** if and only if $f$ is both an open mapping and a continuous mapping.

If such a **homeomorphism** exists, then $T_\alpha$ and $T_\beta$ are said to be **homeomorphic**.

The symbolism $T_\alpha \sim T_\beta$ is often seen to denote that $T_\alpha$ is **homeomorphic** to $T_\beta$.

## Also see

- Results about
**homeomorphisms**can be found here.

## Sources

- 1970: Lynn Arthur Steen and J. Arthur Seebach, Jr.:
*Counterexamples in Topology*... (previous) ... (next): $\text{I}: \ \S 1$: Functions