Definition:Hyperbolic Secant/Definition 2
Jump to navigation
Jump to search
Definition
The hyperbolic secant function is defined on the complex numbers as:
- $\sech: X \to \C$:
- $\forall z \in X: \sech z := \dfrac 1 {\cosh z}$
where:
- $\cosh$ is the hyperbolic cosine
- $X = \set {z: z \in \C, \ \cosh z \ne 0}$
Also see
- Definition:Hyperbolic Sine
- Definition:Hyperbolic Cosine
- Definition:Hyperbolic Tangent
- Definition:Hyperbolic Cotangent
- Definition:Hyperbolic Cosecant
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $2$: Functions, Limits and Continuity: The Elementary Functions: $5$
- Weisstein, Eric W. "Hyperbolic Secant." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/HyperbolicSecant.html