Definition:Hyperbolic Secant/Definition 2

From ProofWiki
Jump to navigation Jump to search

Definition

The hyperbolic secant function is defined on the complex numbers as:

$\sech: X \to \C$:
$\forall z \in X: \sech z := \dfrac 1 {\cosh z}$

where:

$\cosh$ is the hyperbolic cosine
$X = \set {z: z \in \C, \ \cosh z \ne 0}$


Also see


Sources