# Definition:Hypergeometric Series

Jump to navigation
Jump to search

## Definition

A **hypergeometric series** is a power series:

- $\beta_0 + \beta_1 z + \beta_2 z^2 + \dots = \sum_{n \mathop \ge 0} \beta_n z^n$

in which the ratio of successive coefficients is a rational function of $n$:

- $\dfrac {\beta_{n + 1} } {\beta_n} = \dfrac {\map A n} {\map B n}$

where $\map A n$ and $\map B n$ are polynomials in $n$.

## Historical Note

Carl Friedrich Gauss did considerable work on this series, as published in his work:

- 1813:
*Disquisitiones generales circa seriam infinitam $1 + \frac {\alpha \beta} {1 \cdot \gamma} \, x + \frac {\alpha \left({\alpha + 1}\right) \beta \left({\beta + 1}\right)} {1 \cdot 2 \cdot \gamma \left({\gamma + 1}\right)} \, x \, x + \cdots $*(*Commentationes societatis regiae scientarum Gottingensis recentiores***Vol. 2**)

## Sources

- 2008: David Nelson:
*The Penguin Dictionary of Mathematics*(4th ed.) ... (previous) ... (next): Entry:**hypergeometric series**