Definition:Indexed Iterated Binary Operation/Magma

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\left({G, *}\right)$ be a magma.

Let $a, b \in \Z$ be integers.

Let $\left[{a \,.\,.\, b}\right]$ be the integer interval between $a$ and $b$.

Let $f : \left[{a \,.\,.\, b}\right] \to G$ be a mapping.

Let $a\leq b$


The indexed iteration of $*$ of $f$ from $a$ to $b$ is recursively defined and denoted:

$\displaystyle \prod_{k \mathop = a}^b f(k) = \begin{cases} f(a) & : b = a \\ \left( \displaystyle \prod_{k \mathop = a}^{b-1} f(k) \right) * f(b) & : b > a\end{cases}$

For each ordered $n$-tuple $\left({a_1, a_2, \ldots, a_n}\right) \in S^n$, the composite of $\left({a_1, a_2, \ldots, a_n}\right)$ for $\oplus$ is the value at $\left({a_1, a_2, \ldots, a_n}\right)$ of the $n$-ary operation defined by $\oplus$.


This composite is recursively defined and denoted:

\(\displaystyle \displaystyle \bigoplus_{k \mathop = 1}^n a_k\) \(=\) \(\displaystyle \oplus_n \left({a_1, a_2, \ldots, a_n}\right)\)
\(\displaystyle \) \(=\) \(\displaystyle \begin{cases} a & : n = 1 \\ \oplus_m \left({a_1, \ldots, a_m}\right) \oplus a_{m+1} & : n = m + 1 \end{cases}\)
\(\displaystyle \) \(=\) \(\displaystyle \left({\left({\cdots \left({\left({a_1 \oplus a_2}\right) \oplus a_3}\right) \oplus \cdots}\right) \oplus a_{n-1} }\right) \oplus a_n\)


Also see


Sources