# Definition:Internal Group Direct Product/General Definition/Definition by Unique Expression

## Definition

Let $\sequence {H_n} = \struct {H_1, \circ {\restriction_{H_1} } }, \ldots, \struct {H_n, \circ {\restriction_{H_n} } }$ be a (finite) sequence of subgroups of a group $\struct {G, \circ}$

where $\circ {\restriction_{H_1} }, \ldots, \circ {\restriction_{H_n} }$ are the restrictions of $\circ$ to $H_1, \ldots, H_n$ respectively.

The group $\struct {G, \circ}$ is the **internal group direct product of $\sequence {H_n}$** if and only if:

- $(1): \quad$ Each $H_1, H_2, \ldots, H_n$ is a normal subgroup of $G$

- $(2): \quad$ Each element $g$ of $G$ can be expressed uniquely in the form:
- $g = h_1 \circ h_2 \circ \cdots \circ h_n$

- where $h_i \in H_i$ for all $i \in \set {1, 2, \ldots, n}$.

## Also known as

Some authors refer to the **internal group direct product** $H \times K$ as the **normal product** of $H$ by $K$.

Other sources use the term **semidirect product**.

Some authors call it just the **group direct product**, but it should not be confused with the external group direct product.

Although this is just a more specific example of the internal direct product of general algebraic structures, it is usually defined and treated separately because of its considerable conceptual importance.

## Also see

- Results about
**internal group direct products**can be found**here**.

## Sources

- 1996: John F. Humphreys:
*A Course in Group Theory*... (previous) ... (next): Chapter $13$: Direct products: Direct products: Definition $13.3$