Definition:Invertible Bounded Linear Transformation

From ProofWiki
Jump to navigation Jump to search

This page is about invertibility in the context of Bounded Linear Transformation. For other uses, see invertible.

Definition

Normed Vector Space

Let $\struct {V, \norm \cdot_V}$ and $\struct {U, \norm \cdot_U}$ be normed vector spaces.

Let $A : V \to U$ be a bounded linear transformation.


We say that $A$ is invertible as a bounded linear transformation if and only if:

$A$ has an inverse mapping that is a bounded linear transformation.


That is:

there exists a bounded linear transformation $B : U \to V$ such that:
$A \circ B = I_U$
$B \circ A = I_V$

where $I_U$ and $I_V$ are the identity mappings on $U$ and $V$ respectively.

We say that $B$ is the inverse of $A$ and write $B = A^{-1}$.

The process of finding an $A^{-1}$ given $A$ is called inverting.


Inner Product Space

Let $\struct {V, \innerprod \cdot \cdot}$ and $\struct {U, \innerprod \cdot \cdot}$ be inner product spaces.

Let $A : V \to U$ be a bounded linear transformation.


We say that $A$ is invertible as a bounded linear transformation if and only if:

$A$ has an inverse mapping that is a bounded linear transformation.


That is:

there exists a bounded linear transformation $B : U \to V$ such that:
$A \circ B = I_U$
$B \circ A = I_V$

where $I_U$ and $I_V$ are the identity mappings on $U$ and $V$ respectively.

We say that $B$ is the inverse of $A$ and write $B = A^{-1}$.

The process of finding an $A^{-1}$ given $A$ is called inverting.


Also see