Definition:Irreducible Space/Definition 3

From ProofWiki
Jump to navigation Jump to search

Definition

A topological space $T = \left({S, \tau}\right)$ is irreducible if and only if every two non-empty open sets of $T$ have non-empty intersection:

$\forall U, V \in \tau: U, V \ne \varnothing \implies U \cap V \ne \varnothing$


Also see


Sources