# Definition:Isolated Point (Metric Space)

Jump to navigation
Jump to search

## Definition

Let $M = \left({A, d}\right)$ be a metric space.

### Isolated Point in Subset

Let $S \subseteq A$ be a subset of $A$.

$a \in S$ is an **isolated point** of $S$ if and only if there exists an open $\epsilon$-ball of $x$ in $M$ containing no points of $S$ other than $a$:

- $\exists \epsilon \in \R_{>0}: \map {B_\epsilon} a \cap S = \set a$

That is:

- $\exists \epsilon \in \R_{>0}: \set {x \in S: \map d {x, a} < \epsilon} = \set a$

### Isolated Point in Space

When $S = A$ this reduces to:

$a \in A$ is an **isolated point** of $M$ if and only if there exists an open $\epsilon$-ball of $x$ containing no points other than $a$:

- $\exists \epsilon \in \R_{>0}: \map {B_\epsilon} a = \set a$

That is:

- $\exists \epsilon \in \R_{>0}: \set {x \in A: \map d {x, a} < \epsilon} = \set a$

## Metric Space as a Topological Space

From Metric Induces Topology we can consider the topology $\tau{\left({A, d}\right)}$ on $A$:

- $\tau{\left({A, d}\right)} := \left\{{B_\epsilon \left({a}\right): \epsilon \in \R_{>0}, a \in A, B_\epsilon \left({a}\right) \subseteq S}\right\}$

and see that the definition given here is compatible with that of the definition for a topological space.

## Also see

- Results about
**isolated points**can be found here.