Definition:Isometry (Metric Spaces)/Into

From ProofWiki
Jump to navigation Jump to search


Let $M_1 = \struct {A_1, d_1}$ and $M_2 = \struct {A_2, d_2}$ be metric spaces or pseudometric spaces.

Let $\phi: A_1 \to A_2$ be an injection such that:

$\forall a, b \in A_1: \map {d_1} {a, b} = \map {d_2} {\map \phi a, \map \phi b}$

Then $\phi$ is called an isometry (from $M_1$) into $M_2$.

That is, an isometry (from $M_1$) into $M_2$ is an isometry which is not actually a surjection, but satisfies the other conditions for being an isometry.

Also see

  • Results about isometries can be found here.